
Taylor Krusen
Associate Developer Advocate
Smartsheet

Dave Inden
Technical Customer Support Engineer
Smartsheet

#SmartsheetENGAGE

Advanced Tips and Tricks 
for the Smartsheet API



Certain information set forth in this presentation is “forward-looking information.” Except for statements of historical fact, information 
contained herein constitutes forward-looking statements. Forward-looking statements are not guarantees of future performance and
undue reliance should not be placed on them. Such forward-looking statements necessarily involve known and unknown risks and 
uncertainties, many of which are and will be described in Smartsheet’s filings with the US Securities and Exchange Commission, and these 
risks and uncertainties may cause actual performance and financial results in future periods to differ materially from any projections of 
future performance or results expressed or implied by such forward-looking statements. Although forward-looking statements contained 
herein are based upon what Smartsheet management believes are reasonable assumptions, there can be no assurance that forward-
looking statements will prove to be accurate, as actual results and future events could differ materially from those anticipated in such 
statements. Smartsheet undertakes no obligation to update forward-looking statements except as required by law.



Advanced Use of the Smartsheet API

• Secure – share data, not sensitive info

• Automated – trigger and respond to events 

• Scalable – reliably meet your needs at high volume

Moving beyond basic API calls

The Smartsheet API is…



Overview

• Secure – share data, not sensitive info
– Smartsheet OAuth Flow

• Automated – trigger and respond to events 
– Smartsheet webhooks

• Scalable – reliably meet your needs at high volume
– Strategies for building at a larger scale

What are we actually covering?

We’ll discuss what a topic is and how Smartsheet does it.



Security and the API
Creating a Smartsheet OAuth Flow



OAuth 2.0

• Open authorization protocol

• Allows apps to share information 

without exchanging sensitive 

data

• Widely supported

• When building “third-party” 

integrations

• You want other users to share 

their Smartsheet data 
– Attribution of changes

– Security (roles and permissions)

– Not passing around a token

What is it? When do I need it? 

Connecting apps without sharing sensitive data



OAuth Flow
Smartsheet’s
3-legged OAuth Flow

1. Request an Authorization 

Code.

2. User gives consent and 

Smartsheet sends 

Authorization Code.

3. Authorization code (and app 

secret) is used to request an 

Access Token.



Setup: Register an Application

Option A – Create new 
developer sandbox account

1.) Sign up for a Smartsheet Developer Account

Visit pageà register à build stuff

Option B – Activate ‘Developer 
Tools’ on existing account
Request access from Smartsheet
support.

https://developers.smartsheet.com/register

https://help.smartsheet.com/contact
https://developers.smartsheet.com/register


Setup: Register an Application

Click Account à Developer Tools à Create New App.

2.) Create a new application



Setup: Register an Application
3.) Enter details about application

Inform users about your 

application when they consent to 

share Smartsheet data. 

Smartsheet sends important 

data to your App redirect URL .

The App redirect URL must be 
a domain you control.



Setup: Register an Application
4.) Record sensitive info for use in OAuth Flow

The App client id and 

App secret are used 

to create the OAuth 

Flow. 



1st leg

2nd leg

3rd leg

3-legged OAuth Flow
Step by step walkthrough

This graphic and more 

detailed instructions on 

OAuth Flow are available in 

the API documentation. 

https://smartsheet-platform.github.io/api-docs/


1st leg

Requesting an 
Authorization Code



Request Authorization Code

1. App client id
– From the ‘App Profile’ page of Smartsheet

2. Access scopes
– Define the level of access granted to a user
– I.E. WRITE_SHEETS, ADMIN_WEBHOOKS, READ_CONTACTS

3. Response type set to code
– Automatically added by SDKs

Leg #1: Smartsheet OAuth Flow 
The initial request requires three parameters:

A properly formatted request looks like this:

https://app.smartsheet.com/b/authorize? 
response_type=code&client_id=<your_client_id>&scope=<your_access_scopes>

• State (optional)
– Arbitrary string that is returned to the app. Helps add custom logic to OAuth Flow

&state=<some_string>



1. User clicks allow
2. Smartsheetsends 

Authorization Code

2nd leg



Grant Access àReceive Authorization 
Code
User clicks Allow—consenting 
to share Smartsheet data.

Leg #2: Smartsheet OAuth Flow
Smartsheet sends 
Authorization Code

• Smartsheet sends Authorization 
Code to application’s App redirect 
URL as a query parameter.

• The Authorization Code must be 
captured for use in the final 
request. 



3rd leg

Format and send 
request for Access 
Token



Format Access Token Request
Leg #3: Smartsheet OAuth Flow

An example of a user-generated Hash in Node.js

The final POST request to the /token endpoint must contain a user-

generated Hash.

– The Hash is an SHA-256 hash of the App secret concatenated 

with a pipe and authorization code.



Request Access Token
Leg #3: Smartsheet OAuth Flow

The request contains three 

parameters:

• Client id

• Authorization code

• Hash from previous step



Success! Access Token Received
Smartsheet sent back an Access Token

• Save the entire token object

• The access token is valid for ~ 7 days

• The refresh token can renew the access token without 

completing another full OAuth Flow



Automating with the API
Creating and Using Smartsheet Webhooks



Webhooks

• Remove complexity and overhead 

of polling for changes

• Receive valuable information when 

it happens

• Event callbacks sent via HTTP POST 

to your callback URL

• No standard, no protocol… just a 

useful design pattern

• Link together separate tools or 

services

• Respond to events with custom code

• Automate tasks

• “Glue” everything together

What and why? How can I use them? 

Connecting the web with event notifications



Smartsheet for JIRA
• Webhooks are used on both 

sides to trigger a workflow 

when something changes

• Application takes action 

after receiving the webhook

event

• Data is kept in sync 

automatically across two 

systems in real time as 

people work

Webhooks in action



How does Smartsheet Create Webhooks?



Webhook in Action

Implementation differs based on 
programming language.

Consuming webhook data from Smartsheet

Demo uses our sample node.js webhook (available on Github).

Event data is ‘thin’… tells you 
where rather than what.

You need to query the sheet to 
determine changes to data.

https://github.com/smartsheet-samples/node-webhook-sample


SmartsheetWebhooks

1. Subscribe to event-notifications by 
creating and registering a 
webhook.

2. Smartsheet sends data via POST 
when changes occur in monitored 
sheet.

3. Your application receives and 
processes the event data.

Constraints Plain English

Automatically respond to Smartsheet events 

- Cell changed in 
sheet_b, send 
webhook to 
https://YourApp.com/abc

- Row added to 
sheet_w, send 
webhook to 
https://YourApp.com/def

- Can only listen for 

changes on a 

sheet

- Webhooks fire on 

all changes to a 

sheet

Overview



Working at Scale
Using the Smartsheet API at higher volumes



Using the API at Higher Volumes
Considerations and strategies

• Important concepts for working at scale
– Making calls efficiently

– Using a system for logging

– Planning for rate limits

• Making use of Smartsheet SDKs
– Languages: Java, C#, Python, JavaScript (node.js), Ruby

– Benefits of using an SDK



Making API Calls Efficiently

Many endpoints support bulk operations—allowing you to create, update, or 
delete multiple objects in a single request.

Using bulk operations

Practically speaking
• Call UpdateRows once with an 

array of 30 row objects instead of

individually on each row object.

• Call ShareWorkspace once on an 

array of user objects instead of

calling it for each user.

Using bulk operations…
Ø Better performance

Ø Prevents save errors from 

overwhelming an endpoint (I.E. 

quickly updating 60 rows individually)

Ø Keeps you from hitting the rate limit



Bulk Operations

By default, bulk operations are all or nothing; one invalid objects makes the whole 
request fail

Understanding requests with multiple objects

You can modify this behavior with the query parameter allowPartialSuccess=true
• Valid objects are successful
• Returns array of failed items

Don’t be fooled!
• A 200 success HTTP status is returned but the request didn’t fully complete.



Key Concepts to Address

Logging

• Capture stack traces for future 

reference.

• Gain visibility into errors.

• Identify what happened before

point of failure.

• Better understand the flow of 

information in your app.

Rate limits

• Throttling occurs at 300 requests per 

minute. Smartsheet may change this.

• Some requests cost extra…
– Cell history & adding a file attachment 

count as 10 API requests

– Check the API docs!

• Plan for the worst.

Gain insight into your appand handle errorsgracefully

Think about these at the beginning. A little planning will save a lot of pain. 



About That Rate Limit…

This is a good reason to use the Smartsheet SDK for your respective language.

Help! I hit the rate limit

What you get back
• Rejected request with 429 HTTP status code

• Body:

How you should handle it
• Wait and retry



What’s an SDK Again?

Languages Benefits

Smartsheet has Software Development Kits (SDK)

• Java

• C#

• Python

• JavaScript (Node.js)

• Ruby

• Native language object models

• Logging

• Rate limit retry / backoff

• Sample code

• Full reference documentation



SDKs are Awesome
And come with nice things

SDK Logging Retry (rate 
limit)

Details

JavaScript 
(Node.js)

Winston Yes JavaScript SDK Docs

Python Python library Yes Python SDK Docs*
Ruby Standard logger Yes Ruby SDK Docs
C# NLog project Yes C# SDK Docs —

Advanced Topics
Java Console and SLF4J Yes Java SDK Docs —

Advanced Topics

https://github.com/smartsheet-platform/smartsheet-javascript-sdk
https://github.com/smartsheet-platform/smartsheet-python-sdk
https://github.com/smartsheet-platform/smartsheet-ruby-sdk
https://github.com/smartsheet-platform/smartsheet-csharp-sdk/blob/master/ADVANCED.md
https://github.com/smartsheet-platform/smartsheet-java-sdk/blob/master/ADVANCED.md


Java SDK and C# SDK 

The Java SDK advanced topics docs and C# SDK advanced topics docs have 
examples of how to override the default retry / timeout logic.

Retry logic 

Error code Meaning
4001 Smartsheet offline
4002 Server timeout
4003 Rate limit exceeded
4004 Unexpected error

…Implement your own custom retries
- E.g. an authorization error triggering a token refresh.

https://github.com/smartsheet-platform/smartsheet-java-sdk/blob/master/ADVANCED.md
https://github.com/smartsheet-platform/smartsheet-csharp-sdk/blob/master/ADVANCED.md


Advanced Use of the Smartsheet API

• The API can securely share Smartsheet data using an OAuth Flow.

• Learn about changes in Smartsheet automatically by using webhooks.

• For your application to scale well, it must use calls efficiently, 

implement logging, and contain retry / backoff logic.

– Pro tip: logging and retry are built into the SDKs

Learn the hard parts!



Questions about the API?

Smartsheet API docs

Stack Overflow (‘smartsheet-api’ tag)

https://www.smartsheet.com/gethelp

https://smartsheet-platform.github.io/api-docs/
https://stackoverflow.com/questions/tagged/smartsheet-api
https://www.smartsheet.com/gethelp


Smartsheet Developer Relations

https://developers.smartsheet.com

devrel@smartsheet.com

@SmartsheetDev

https://developers.smartsheet.com/


Don’t forget to:

• Share your feedback in our survey in the 
ENGAGE app

• Stop by the Administration & Custom 
Solutions booth on the first floor

• Visit the Innovation Center for hands-on 
learning, support, services, swag, and more



Q&A

#SmartsheetENGAGE


