smartsheet

ENGAGE / Advanced Tips and Tricks
for the Smartsheet API

Taylor Krusen Dave Inden
Associate Developer Advocate Technical Customer Support Engineer
Smartsheet Smartsheet

#SmartsheetENGAGE

Certain information set forth in this presentation is “forward-looking information.” Except for statements of historical fact, information
contained herein constitutes forward-looking statements. Forward-looking statements are not guarantees of future performance and
undue reliance should not be placed on them. Such forward-looking statements necessarily involve known and unknown risks and
uncertainties, many of which are and will be described in Smartsheet's filings with the US Securities and Exchange Commission, and these
risks and uncertainties may cause actual performance and financial results in future periods to differ materially from any projections of
future performance or results expressed or implied by such forward-looking statements. Although forward-looking statements contained
herein are based upon what Smartsheet management believes are reasonable assumptions, there can be no assurance that forward-
looking statements will prove to be accurate, as actual results and future events could differ materially from those anticipated in such
statements. Smartsheet undertakes no obligation to update forward-looking statements except as required by law.

smartsheet

Advanced Use of the Smartsheet API
Moving beyond basic API calls

The Smartsheet API is...

« Secure - share data, not sensitive info
- Automated - trigger and respond to events

« Scalable - reliably meet your needs at high volume

smartsheet
ENGAGE

Overview

What are we actually covering?

We'll discuss what a topic is and how Smartsheet does it.

« Secure - share data, not sensitive info
— Smartsheet OAuth Flow
- Automated - trigger and respond to events

— Smartsheet webhooks

« Scalable - reliably meet your needs at high volume

— Strategies for building at a larger scale

smartsheet
ENGAGE

Security and the API

Creating a Smartsheet OAuth Flow

ssssssss

ENGAGE

OAuth 2.0

Connecting apps without sharing sensitive data

When do | need it

« Open authorization protocol « When building “third-party”

« Allows apps to share information integrations
without exchanging sensitive * You want other users to share
data their Smartsheet data

. Widely supported — Attribution of changes

— Security (roles and permissions)

— Not passing around a token

smartsheet
ENGAGE

Client Id and client secret retrieved from

OAuth Flow

’ Your Smartsheet
Smartsheet’s app l
3-legged OAuth Flow clont 14
Request Access scopes
authorization - Allow
1. Request an Authorization
Code. ¢ Auth code
. Client Id
2. User gives consent and Hash of:
Sma rtsheet sends Request access secret + auth COdi Return access and
token refresh tokens
Authorization Code.
3. Authorization code (and app I
H Do one of the following:
Secret) IS Used tO req UeSt an * |f valid token, save to use with API requests
k * If expired, use refresh token to get new access and
Access Token. refresh tokens

smartsheet
ENGAGE

Setup: Register an Application

1.) Sign up for a Smartsheet Developer Account

Option A - Create new
developer sandbox account

Visit page-> register - build stuff

Developer Registration

View Edit Delete Revisions

Developer Sandbox Account

Register for a Smartsheet Developer account if you would like to accomplish any of the following.

1. Create a Sandbox Smartsheet account to keep your developer data separate from your production
data. NOTE: make sure to use a different email address than the one used for your production Smartsheet account.

2. Build third party applications with Smartsheet using OAuth 2.
No need to register if you already have a Smartsheet account, and just need to generate an Access Token -
all Smartsheet users have access to the AP| by generating an Access Token in the AP| Access available in
the Personal Settings option of the Account menu.

Email Address

By clicking below, | agree to the Smartsheet Developer Agreement. Our Privacy Policy describes how we process your personal data

Register Developer Account

https://developers.smartsheet.com/register

Option B - Activate ‘Developer
Tools’ on existing account

Request access from Smartsheet
support.

O 0o
.[:}_,:\

https://help.smartsheet.com/contact
https://developers.smartsheet.com/register

Setup: Register an Application

2.) Create a new application

Click Account > Developer Tools > Create New App.

x x
Developer Tools Create New App
Please see the Developer Portal for more information on how to use Developer Tools. App name:
Account Admin... Developer Profile App description:
Name - company or individual: Taylor Krusen
Personal Settings... I AppURL: @
Website (optional):
Apps & Integrations... App contactisupport:

Email: taylor.krusen@smartsheet.com

App redirect URL:
DOV0|ODGF Tools... Developer Profile Page: https://app.smartsheet.com/b/developer: RSUM
Personal Colors & Logg_ " Developer profile page is a public page that anyone can access to learn more about you and your applications. Publish App? @

My Smartsheet Contacts... Logo: @

Upload.

Sign In to Skype for Business Sample oAuth Flow

Formatting test app

Sign Out
taylor kruseni@smartsheet.com

smartsheet

Setup: Register an Application

3.) Enter details about application

Create New App ’ Inform users about your
)/ application when they consent to
App description:
share Smartsheet data.

App URL: ©

App contact/support:

0 redrectURL: —’\‘ Smartsheet sends important

Publish App? @

= ! s data to your App redirect URL.
'

The App redirect URL must be
a domain you control.

smartsheet
ENGAGE

Setup: Register an Application

4) Record sensitive info for use in OAuth Flow

x
App Profile
App name: | Engage Demo App

App description: | This is a placeholder App to show attendees what an application
looks like from Smartsheet Developer Tools

App URL: @ | https:/igoogle.com The App CIient id and

App contact/support: | demo@engage.com

App secret are used

App redirect URL: | http://localhost:3000/callback
Publah AvE? © to create the OAuth
Logo: ©

Flow.

App profile page: @ hitos://app smartsheet.com/b/apps/U4FvVeviOHo

App clientid: | obssf/9h3ci5gifg)31

App secret: | 733n|c1y0I6rBo6avus

smartsheet
ENGAGE

1st leg
2nd |eg

3rd leg

Client Id and client secret retrieved from
Developer Tools => App Details

Your Smartsheet
app l
Client Id
Request Access scopes
o > Allow
authorization
Auth code
¢ Client Id
Hash of:
Request access Secret + auth codg Return access and
token > refresh tokens

Do one of the following:
* If valid token, save to use with API requests

* If expired, use refresh token to get new access and
refresh tokens

3-legged OAuth Flow
Step by step walkthrough

This graphic and more

detailed instructions on

OAuth Flow are available in

the APl documentation.

smartsheet
ENGAGE

https://smartsheet-platform.github.io/api-docs/

Client Id and client secret retrieved from
Developer Tools => App Details

o Smartsheet
app l
Client Id
st Request Access scopes
1 I eg authorization > Allow
R S‘t Auth code
eque lng an ‘ Client Id
Authorization Code eh ot
Request access secret + auth code | p o\ access and

token - refresh tokens

Do one of the following:
* |f valid token, save to use with API requests

* If expired, use refresh token to get new access and
refresh tokens

smartsheet
ENGAGE

Request Authorization Code
Leg #1: Smartsheet OAuth Flow

The initial request requires three parameters:

1. Appclientid
— From the ‘App Profile’ page of Smartsheet
2. Access scopes
— Define the level of access granted to a user
— |LE. WRITE_SHEETS, ADMIN_WEBHOOKS, READ_CONTACTS

3. Response type set to code
— Automatically added by SDKs

« State (optional)
— Arbitrary string that is returned to the app. Helps add custom logic to OAuth Flow

A properly formatted request looks like this:

https://app.smartsheet.com/b/authorize?
response_type=code&client_id=<your_client_id>&scope=<your_access_scopes> &state=<some_string>

smartsheet
ENGAGE

Client Id and client secret retrieved from
Developer Tools => App Details

Your Smartsheet
app l
Client Id
Al
Request ccess scopes» Allow
authorization
2nd Ieg Auth code
‘ Client Id
Hash of:
secret + auth code

Request access Return access and

User dlicks allow token > " refresh tokens

Smartsheet sends
Authorization Code |

Do one of the following:
* |f valid token, save to use with API requests

* If expired, use refresh token to get new access and
refresh tokens

smartsheet
ENGAGE

Grant Access - Receive Authorization

CodesSmartsheet OAuth Flow

User clicks Allow—consenting
to share Smartsheet data.

n smartsheet

This app is requesting access to
your Smartsheet account Allow Access?

The CompanyConnector App will be able to:

Smartsheet sends
Authorization Code

Smartsheet sends Authorization
Code to application’s App redirect
URL as a query parameter.

The Authorization Code must be
captured for use in the final
request.

smartsheet
ENGAGE

3rd leg

Format and send
request for Access
Token

Client Id and client secret retrieved from
Developer Tools => App Details

Your

app l

Request
authorization

Smartsheet

Client Id
Access scopes

L

Allow

Auth code

!

Request access
token

Client Id

Hash of:
secret + auth code

Return access and
refresh tokens

!

Do one of the following:
* |f valid token, save to use with API requests
* If expired, use refresh token to get new access and

refresh tokens

smartsheet
ENGAGE

Format Access Token Request
Leg #3: Smartsheet OAuth Flow

The final POST request to the /token endpoint must contain a user-
generated Hash.

— The Hash is an SHA-256 hash of the App secret concatenated
with a pipe and authorization code. \ i e

An example of a user-generated Hash in Node.js

hash =
crypto.createHash('sha256"')

.update('9samp7le3for7lyou’ + '|' + 'sample6p9qisx6a’)

.digest('hex"');

smartsheet
ENGAGE

Request Access Token
Leg #3: Smartsheet OAuth Flow

The request contains three

parameters:

options = {
queryParameters: {
client_id: config.APP_CLIENT_ID,
code: authCode,
hash: generated_hash
}
5
smartsheet.tokens.getAccessToken(options, processToken)
.then((token) => {
res
.status(200)
.json(token);

)

smartsheet
ENGAGE

Success! Access Token Received

Smartsheet sent back an Access Token

{
"token": {
"access_token": "11352u9jujauoqz4gstvsaed5",
"token_type": "bearer",

"refresh_token": "e9x352a9mp41511e2505",
"expires_in": 604799,
"expires_at": "2017-11-21T723:32:22.180Z"

* Save the entire token object
* The access token is valid for ~ 7 days

* The refresh token can renew the access token without

completing another full OAuth Flow

smartsheet
ENGAGE

Automating with the API

Creating and Using Smartsheet Webhooks

Webhooks

Connecting the web with event notifications

What and why?

- Remove complexity and overhead » Link together separate tools or
of polling for changes services

« Receive valuable information when « Respond to events with custom code
it happens * Automate tasks

« Event callbacks sent via HTTP POST « “Glue” everything together
to your callback URL
« No standard, no protocol... just a

useful design pattern

smartsheet
ENGAGE

Smartsheet for JIRA

\Webhooks in action Webhooks are used on both
sides to trigger a workflow

Application takes action
after
event

DEICES

Bl smartsheet

e s T s

il] 4l il
el il Al Sl el SR A
P EE R E

across two
systems in real time as

people work

smartsheet

How does Smartsheet Create Webhooks?

Send Request: Create webhook [JSend Request: Update webhook
API Client PUT /webhooks/{id
ESRERamnnc0ne T enabiede tudly
A
webhook.enabled: false webhook.enabled: true
webhook . status: NEW_NOT_VERIFIED webhook.status: ENABLED
Y
Respond Send 'Verification Request' Respond
Smartsheet |
(webhook created but not enabled) w/ Header: (webhook enabled)
Smartsheet-Hook-Challenge
A
Y
Subscriber Respond (HTTP Status 200)
(callback URL) w/ Header:
smartsheet -Hook -Response

smartsheet
ENGAGE

Webhook in Action

Consuming webhook data from Smartsheet

Implementation differs based on
programming language.

Event data is ‘thin'... tells you
where rather than what.

You need to query the sheet to
determine changes to data.

Demo uses our sample node.js webhook (available on Github).

smartsheet
ENGAGE

https://github.com/smartsheet-samples/node-webhook-sample

Smartsheet Webhooks

Automatically respond to Smartsheet events

Overview Constraints Plain English
1. Subscribe to event-notifications by - Can only listen for - Cell changed in
. . . changes on 3 sheet_b, send
creating and registering a g webhook to
webhook. sheet https://YourApp.com/abc
2. Smartsheet sends data via POST _ Webhooks fire on . dded t
when changes occur in monitored) ow added to
all changesto a sheet_w, send
sheet. webhook to
icati i sheet https://YourA /def
3. Your application receives and ps:/7/YourApp.com/de

processes the event data.

smartsheet
ENGAGE

Working at Scale

Using the Smartsheet API at higher volumes

ssssssssss

ENGAGE

Using the API at Higher Volumes

Considerations and strategies

« Important concepts for working at scale
— Making calls efficiently
— Using a system for logging
— Planning for rate limits
« Making use of Smartsheet SDKs
— Languages: Java, C#, Python, JavaScript (node.js), Ruby
— Benefits of using an SDK

smartsheet
ENGAGE

Making API Calls Efficiently

Using bulk operations

Many endpoints support bulk operations—allowing you to create, update, or
delete multiple objects in a single request.

Practically speaking Using bulk operations...
« Call UpdateRows once with an » Better performance
array of 30 row objects instead of » Prevents save errors from
individually on each row object. overwhelming an endpoint (I.E.
« Call ShareWorkspace once on an quickly updating 60 rows individually)
array of user objects instead of » Keeps you from hitting the rate limit

calling it for each user.

smartsheet
ENGAGE

Bulk Operations

Understanding requests with multiple objects

By default, bulk operations are ; one invalid objects makes the whole
request fail

You can modify this behavior with the query parameter
« Valid objects are successful
« Returns array of failed items

Don't be fooled!
* A 200 success HTTP status is returned but the request didn’t fully complete.

"message": "SUCCESS",

"message': "PARTIAL_SUCCESS",
"resultCode": 0,

"resultCode": 3,
"result": [],

"result": [{
"type": "sheet",
"objectId": 8400677765441412

1]
smartsheet
ENGAGE

"version": 14,
"failedItems": []

Key Concepts to Address

Gain insignt into your app and handle errors gracefully

Logging

Capture stack traces for future
reference.

Gain visibility into errors,
|dentify what happened before
point of failure.

Better understand the flow of

information in your app.

Rate limits

« Throttling occurs at 300 requests per
minute. Smartsheet may change this.

« Some requests cost extra...
— Cell history & adding a file attachment

count as 10 APl requests
— Check the API docs!

« Plan for the worst,

Think about these at the beginning. A little planning will save a lot of pain.

smartsheet
ENGAGE

About That Rate Limit...

Help! | hit the rate limit

What you get back

* Rejected request with 429 HTTP status code
« Body: f

"errorCode": 4003,
"message': "Rate limit exceeded."

}

How you should handle it
« Wait and retry

This is a good reason to use the for your respective language.

smartsheet
ENGAGE

What's an SDK Again?

Smartsheet has Software Development Kits (SDK)

« Java « Native language object models
- C# * Logging

« Python « Rate limit retry / backoff

« JavaScript (Node.js) « Sample code

* Ruby « Full reference documentation

smartsheet
ENGAGE

SDKs are Awesome

And come with nice things

T = G
imit)

JavaScript Winston JavaScript SDK Docs

(Node.js)

Python Python library Yes Python SDK Docs*

Ruby Standard logger Yes Ruby SDK Docs

C# NLog project Yes C# SDK Docs —
Advanced Topics

Java Console and SLF4) Yes Java SDK Docs —

Advanced Topics

smartsheet
ENGAGE

https://github.com/smartsheet-platform/smartsheet-javascript-sdk
https://github.com/smartsheet-platform/smartsheet-python-sdk
https://github.com/smartsheet-platform/smartsheet-ruby-sdk
https://github.com/smartsheet-platform/smartsheet-csharp-sdk/blob/master/ADVANCED.md
https://github.com/smartsheet-platform/smartsheet-java-sdk/blob/master/ADVANCED.md

Java SDK and C# SDK
Retry logic

The Java SDK advanced topics docs and C# SDK advanced topics docs have
examples of how to override the default retry / timeout logic.

switch(error.getErrorCode()) {
// The default shouldRetry, retries 4001, 4002, 4003, 4004 codes

case 4001: Error code Meaning
case 4002: -
case 4003: 4001 Smartsheet offline
case 4004: } o 4002 Server timeout
case 9999: // adding my fictional error code —
break; 4003 Rate limit exceeded
default: , 4004 Unexpected error
return false;

...mplement your own custom retries
- E.g. an authorization error triggering a token refresh.

smartsheet
ENGAGE

https://github.com/smartsheet-platform/smartsheet-java-sdk/blob/master/ADVANCED.md
https://github.com/smartsheet-platform/smartsheet-csharp-sdk/blob/master/ADVANCED.md

Advanced Use of the Smartsheet API

L earn the hard parts!

« The API can securely share Smartsheet data using an OAuth Flow.
« Learn about changes in Smartsheet automatically by using webhooks.
« For your application to scale well, it must use calls efficiently,

implement logging, and contain retry / backoff logic.

— Pro tip: logging and retry are built into the SDKs

smartsheet
ENGAGE

Questions about the API?

Smartsheet APl docs

Stack Overflow (‘smartsheet-api’' tag)

https://www.smartsheet.com/gethelp

smartsheet
ENGAGE

https://smartsheet-platform.github.io/api-docs/
https://stackoverflow.com/questions/tagged/smartsheet-api
https://www.smartsheet.com/gethelp

Smartsheet Developer Relations

https://developers.smartsheet.com

devrel@smartsheet.com
@SmartsheetDev

smartsheet
ENGAGE

https://developers.smartsheet.com/

Don’t forget to:

« Share your feedback in our survey in the
ENGAGE app

« Stop by the Administration & Custom
Solutions booth on the first floor

e Visit the InnovatioN‘CEREEEST 1\ S-21
learning, support, services, swag, and more

smartsheet
ENGAGE

ENGAGE / Q&A

